Adaptive grid generation based onthe least-squares finite-element method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least-squares finite-element lattice Boltzmann method.

A new numerical model of the lattice Boltzmann method utilizing least-squares finite element in space and Crank-Nicolson method in time is presented. The new method is able to solve problem domains that contain complex or irregular geometric boundaries by using finite-element method's geometric flexibility and numerical stability, while employing efficient and accurate least-squares optimizatio...

متن کامل

Least-Squares Finite Element Methods

Least-squares finite element methods are an attractive class of methods for the numerical solution of partial differential equations. They are motivated by the desire to recover, in general settings, the advantageous features of Rayleigh–Ritz methods such as the avoidance of discrete compatibility conditions and the production of symmetric and positive definite discrete systems. The methods are...

متن کامل

Convergence and Optimality of Adaptive Least Squares Finite Element Methods

The first-order div least squares finite element methods (LSFEMs) allow for an immediate a posteriori error control by the computable residual of the least squares functional. This paper establishes an adaptive refinement strategy based on some equivalent refinement indicators. Since the first-order div LSFEMmeasures the flux errors inH(div), the data resolution error measures the L2 norm of th...

متن کامل

Adaptive Least Squares Finite Element Methods for the Stokes Problem

Adaptive least-squares nite element methods, including the standard and the weighted versions, for the Stokes problem in the velocity-vorticity-pressure formulation are presented in the article. The most signiicant features of the proposed adaptive methods are that the a posteriori error estimators do not involve ux jumps across interelement boundaries, that the local problems for error estimat...

متن کامل

A weighted adaptive least-squares finite element method for the Poisson-Boltzmann equation

The finite element methodology has become a standard framework for approximating the solution to the Poisson-Boltzmann equation in many biological applications. In this article, we examine the numerical efficacy of least-squares finite element methods for the linearized form of the equations. In particular, we highlight the utility of a first-order form, noting optimality, control of the flux v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2004

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2004.10.006